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a  b  s  t  r  a  c  t

We  investigated  the feasibility  of  using  magneto-optical  sensors  for  measuring  the  magnetic  leakage
fields  in  non-destructive  evaluation.  We  used  magneto-optical  garnet  thin films  as  a  sensor  and  the effect
of crack  dimension  on  the sensor’s  response  were  investigated  via  a simple  Faraday  rotation  technique.
Our results  show  that  the  sensor  signal  displays  a  linear  increase  as  the  length  and  depth  of  the  cracks
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increase  however;  the  change  in crack  width  does  not  have  a  significant  effect  on the  magnetic  leakage
field  and  the  sensor’s  signal.  This  technique  is capable  of  high  resolution  magnetic  imaging  of  small
surface  cracks  and thus  has  great  potential  for application  in  the  magnetic  flux  leakage  test  industry.

© 2011 Elsevier B.V. All rights reserved.
agnetic flux leakage

. Introduction

The magnetic flux leakage (MFL) method is the most common
nd cost-effective nondestructive magnetic testing technique used
n various nondestructive testing applications (NDT) [1,2]. This

ethod is based on measuring the magnetic leakage field (MLF)
ver the surface of a test specimen in the vicinity of small defects
uch as cracks [2].  In the measurement of MFL, we need to visualize
he magnetic map  of the surface with good precision and sensitivity.

The most commonly used sensors for these applications are Hall
nd induction coil sensors [3,4]. Related to recent advances in mag-
etic sensor technology, for the detection of very small changes

n the MFL  distribution, high resolution magnetic sensors such as
QUID [5],  GMR  [6,7] and GMI  [8,9] sensors have been introduced.

On the other hand, magneto-optic (MO) sensors appear atten-
ive and sensitive for the visualization of magnetic map  for
onventional MFL  in NDT applications. There are two  basic modes
f the MO  methods [10] such as static regime detecting MFL  from
urface and subsurface defects [11] and eddy currents (ECs) [12,13]
n metallic specimens.

The MO  sensor technology is based on the combination of mag-

etic field and the MO Faraday effect [14–16].  These sensors are

ocalized and miniaturized for recording the surface magnetic map
pplications. It is generally demanded that the sensing materials
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must have good MO  properties of large Faraday rotation, high MO
figures of merit and suitable saturation magnetic field [17,18].

In fact, sensitive equipment such as Bi substituted yttrium iron
garnet (Bi: YIG) thin films are a principal part of the measuring sys-
tem which determines the capability of an MO sensor. These useful
materials are commonly used in new sensor structures such as
monolayer, multilayer and magneto-photonic crystals [19,20]. The
qualifications of these systems strongly depend on the used image
recorder such as a CCD camera and image processing approach
employed [21]. This makes the simple detection of micro-cracks dif-
ficult and thus there is a need to detect damages by straightforward
detection systems. In this paper, in order to utilize the capabilities
of MO sensors to detect cracks we  used Bi: YIG thin films to mea-
sure the MLF  of metal surface cracks. The effects of crack length (L),
crack depth (D) and the crack width (W) on MFL  response have also
been investigated.

2. Experimental procedure

The principal setup for magneto-optical detection and eval-
uation of rectangular cracks is sketched in Fig. 1(a). The crack
introduced using electro-discharge-machining at the center of a
75 × 200 × 1.5 mm  specimen surface that is magnetized in-plane
along the x-direction (Fig. 1(b)). The measurement setup comprised

of an optical path where the laser light (635 nm)  passed through the
polarizer, garnet thin film and analyzer before it was analyzed by
silicon PIN Photodiode that was connected to the computer via an
oscilloscope.

dx.doi.org/10.1016/j.sna.2011.09.010
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
mailto:teranchi@cc.sbu.ac.ir
dx.doi.org/10.1016/j.sna.2011.09.010
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Fig. 1. (a) Schematic diagram of magneto-optical crack detect

Actually, the linearly polarized light passing through the crack
egion and having its polarization direction changed by Faraday
otation angle, then the beam traverse a second polarizer (analyzer)
nd is next focused onto a photodiode which acts as an intensity
ecorder. In fact the change in polarization direction of the optical
eld due to the test magnetic field can be measured at the photo
etector.

The MLF  signal (Bx) of cracks has been measured by using the
O sensor which was scanned over the crack with 3 mm lift off.
istribution of the sensor signal with respect to position has been

btained after calculating the Faraday rotation angle via Malus’ law.
he Faraday rotations were determined by measuring the changes
n intensity with respect to the field variation for a fixed polarizer
nd analyzer angle set at 45 degree:

ig. 2. (a) The distribution of the magneto-optical sensor’s response for different values
down  triangles)) and the sample without any cracks, the inset shows the variation of wi
tup and (b) the size of a rectangular crack and its coordinates.

�F = cos−1
(

Idet

2Idet 0

)0.5
− 45 (1)

where Idet0 and Idet are the intensity of light without and with
magnetic field respectively.

The dynamic range of a MO  sensor is determined by the satura-
tion magnetic field which can be adjusted by chemical composition
and growth conditions that can be concluded via saturation mag-
netic field, Bs, and maximum amount of Faraday rotation, �max, as
[22]:
S = �maxL

Bs
(2)

Thus the higher the sensitivity the lower the dynamic range and
vice versa. We used a garnet thin film with sensitivity of 0.03◦/mT.

 of crack length, 2 mm (squares), 8 mm (circles), 16 mm (up triangles) and 32 mm
dth of FR signal. (b) Change in the sensor’s response as a function of crack length.
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Fig. 3. (a) The distribution of the magneto-optical sensor’s response for different values of crack depth, 0.3 mm (triangles), 0.5 mm (circles) and 0.8 mm (squares), the inset
shows  the variation of width of FR signal. (b) Change in the sensor’s response as a function of crack depth.
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ig. 4. (a) The distribution of the magneto-optical sensor’s response for different v
hows the variation of width of FR signal. (b) Change in the sensor’s response as a f

A crack induced local damage and so local MFL  must be mea-
ured via MO sensor. As the angle of Faraday rotation is also
roportional to the magnetic field and thus MFL  signal, from a mea-
urement of this angle, we can get the value of the former MFL. The
ffect of crack dimension on MFL  response has been investigated
ith ten test specimens with different lengths, depths and widths.

. Results and discussion

The distribution of the MO  sensor’s signal when increasing the
rack length, L, while the crack depth and width are kept constant at
.5 mm has been shown in Fig. 2(a). The full width at half maximum
FWHM) of these answers has been depicted in the inset of this
gure. As shown in this figure, the FWHM of the MO  answer has

 linear increase until the crack length reaches 16 mm and after
hat the change is smoother. Indeed by increasing the crack length,
he MO Faraday rotation and therefore; the MO answer increased
inearly too (Fig. 2(b)).

As shown in this figure, while
∣∣Bx

∣∣ increases by scanning from
ne end of the crack toward the crack center until reaching its peak
t the center which has the highest amount of leakage, the MO

ensor’s output and thus; the MO Faraday rotation maximize in the
iddle of the crack.
In fact, while MFL  rises in the middle of the crack, the polariza-

ion rotation of linearly polarized light increase and then the MO
f crack width, 0.3 mm (triangles), 0.5 mm (circles) and 0.8 mm (squares), the inset
n of the crack width.

Faraday rotation amplify too. Therefore as expected, the crack is
determined by a significant increase in the sensor signal.

In order to show the sensor capability in the detection of differ-
ent crack depth (D), we  used a sample in which the crack width and
length are kept constant at 0.5 and 8 mm,  respectively.

The effect of crack depth (D) has also been depicted in Fig. 3.
As shown in the figure, we  have found a linear increase in the MO
sensor’s response and its width with crack depth.

It is worth mentioning that the lift-off distance between the MO
sensor and surface of the specimen was  as high as 3 mm which
shows the high sensitivity of the MO sensor in leakage field sensing.

Finally, Fig. 4 depicts the sensor’s distribution and MO Faraday
rotation for samples with different crack width, in which the crack
length and depth are fixed at 8 mm and 0.5 mm respectively.

The leakage flux first increases sharply with the crack width
and reaches its peak at about 0.5 mm  and then converges slowly
to a certain constant level. This manner is confirmed by common
sensors such as EC and GMI  sensors [5,9].

4. Conclusions
A kind of flexible and useful MFL  sensor based on the MO sensor
is presented here. The experiment show that a MO sensing element
like garnet little thin film can be utilized for design a suitable sensor
for non-destructive crack detection.
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We  have investigated how the MO sensor can detect the surface
rack with different spatial distribution and how the dimensions
f the cracks influence the sensor signals. The results indicate that
he sensor signal increases as the length and depth of cracks rise
ecause increasing in the MFL  distribution. The MO sensor is there-
ore successful in discriminating among different crack sizes with
igh sensitivity and low cost technique.

Now the change in Faraday rotation resulting from the MFL  is
asily illustrated by means of MO  sensor from the point of view of
hange in polarization of linearly polarized incidence light. On the
asis of it, the correspondence relationship between the MFL  and
he MO response in crack detection is analyzed.

Finally, this technique is capable of high resolution magnetic
maging of small surface cracks and thus has great potential for
pplication in the MFL  test industry.
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